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a b s t r a c t

In this paper, we study the convergence rates of the discrete-time stochastic approximation consensus
algorithms over sensor networks with communication noises under general digraphs. Basic results of
stochastic analysis and algebraic graph theory are used to investigate the dynamics of the consensus error,
and the mean square and sample path convergence rates of the consensus error are both given in terms
of the graph and noise parameters. Especially, calculation methods to estimate the mean square limit
bounds are presented under balanced digraphs, and sufficient conditions on the network topology and
the step sizes are given to achieve the fast convergence rate. For the sample path limit bounds, estimation
methods are also presented under undirected graphs.

© 2017 Elsevier B.V. All rights reserved.

1. Introduction

Recently, consensus algorithms with stochastic disturbances in
sensor networks have been widely investigated, including mea-
surement noises, time delay, quantized data and random link fail-
ures [1–7]. For consensus problems with communication noises,
the stochastic approximation (SA) consensus algorithm with de-
creasing step sizes is an effectivemethod to attenuate the influence
of noises. Applications of SA consensus algorithms and theoretical
development in consensus problems were reported in [8–12], etc.
Under fixed or time-varying topologies, the condition that the net-
work contains or jointly contains a spanning tree to guarantee con-
sensus is well understood. This problem has been systematically
investigated by the tools of the SA theory [12,13], the quadratic
Lyapunov functions [8,9], the algebraic theory [5], and the ergodic-
ity backward product approach [10,11]. Different from the SA-type
consensus algorithm with decreasing step size, Amelina et al. [14]
proposed the consensus algorithm with a nonvanishing stepsize
for nonlinear agent dynamics over noisy networks to achieve the
approximate mean square consensus.

It is worth noting that the convergence rate of the consensus al-
gorithm, which characterizes how fast consensus can be achieved,
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is an important issue from the perspective of practical applications.
For the casewith precise communication, the consensus error van-
ishes exponentially with the rate governed by the second smallest
eigenvalue of the Laplacian matrix [15,16]. The problems how to
characterize and optimize the convergence rate are extensively
studied via the optimization of theweighted adjacencymatrix [17],
local node state prediction [18], and filtering techniques [19].
Recently, Olshevsky and Tsitsiklis [20] investigated the conver-
gence time of consensus algorithm under time-varying undirected
graphs and proposed a linear time average-consensus protocol un-
der fixed undirected graphs [21]. For the SA consensus algorithm,
the convergence rate problem has also attracted much attention.
For the average-consensus problem under undirected graphs, Kar
and Moura [22] showed that the mathematical expectation of the
state vector sequence converges exponentially to the consensus
value, andDasarathan et al. [12] derived the asymptotic covariance
matrix of the consensus error when the step size a(t) = Θ(t−1).
For the case with balanced digraphs, Li and Zhang [8] obtained the
sample path convergence rate of finite step mean consensus error.
For the leader-following topology case, Xu et al. [13] showed that
the sample path convergence rate of the consensus error is o(aδ1 (t))
if the step size a(t) satisfies limt→∞(a(t)−a(t+1))/(a(t)a(t+1)) ≥

0, and the mean square convergence rate of the consensus error
is o(aδ2 (t)) if a(t) = Θ(t−α) with α ∈ (0.5, 1], δ1, δ2 ∈ (0, 1).
Wang et al. [23,24] investigated the convergence rate in the sense
of convergence in distribution for multi-scale consensus modeling
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with Markovian regime switching. Compared with the case with
precise communication, the convergence of SA algorithm is not
exponentially fast any more and is in more complex relation to
the step size a(t) and network parameters. This motivates us to
evaluate the impacts of the step size and network parameters on
the algorithm, which is useful for the designers to improve the
convergence rate.

In this paper, we consider the discrete-time SA consensus algo-
rithm under general digraphs corrupted by martingale difference
sequence communication noises. Different from [9–11] which fo-
cused on the consensus conditions of the SA consensus algorithm,
the main goal of this paper is focused on the convergence rate
analysis in relation to the step size and network graph parameters.
For a class of typical step sizes, we apply basic results of stochastic
analysis and algebraic graph theory to investigate the consensus
error dynamic equation. Compared with the continuous-time SA
consensus algorithm in [25], there is no Itô formula as the effective
tool and we develop more technical tools of inequality theory to
handle with the closed-form of the consensus error. Our contribu-
tion mainly includes the following three aspects.

• For the case of fixed topologies, we show that if the step size
a(t) = Θ(t−γ ), γ ∈ (0.5, 1), then the mean square con-
vergence rate of the consensus error is O(t−γ ); especially,
for the case with balanced digraphs, the convergence rate
is exactly Θ(t−γ ). Furthermore, both upper and lower limit
bounds of tγ E(∥δ(t)∥2) are explicitly given in terms of the
noise intensity, the number of nodes, the smallest and the
largest nonzero eigenvalues of the Laplacian matrix of the
symmetrized graph.

• If a(t) = Θ(t−1), intuitively, the mean square convergence
rate of the consensus error might be O(t−1) and higher than
the case with a(t) = Θ(t−γ ), γ ∈ (0.5, 1). Interestingly,
we found that this is not always true, and the mean square
convergence rate is O(t−1) only if the Laplacian eigenvalues
of the network topology graph satisfy certain conditions. It
is observed that the fast convergence rate O(t−1) depends
on the step size a(t) and eigenvalues of the Laplacian ma-
trix. Especially, for the case with balanced graphs, choosing
a(t) = Θ(t−1) with λ2 (̂LG) lim inft→∞(ta(t)) > 1 will
achieve the convergence rate O(t−1), where λ2 (̂LG) is the
algebraic connectivity of the symmetrized graph. For the
case with undirected graphs, the condition on the step size
a(t) can be relaxed to λ2(LG) lim inft→∞(ta(t)) > 1/2, where
λ2(LG) is the algebraic connectivity of the graph.

• We study the sample path behavior of the consensus error
under undirected graphs. It is observed that the consensus
error has a convergence rate slightly slower than O(t−γ /2)
almost surely. The upper limit bound of the sample path of
the consensus error is calculated.

Compared with the existing related works [12,8,13,22,26,24],
we systematically analyze the stochastic convergence rates of the
distributed SA consensus algorithm in the sense that both the
network topology and the class of step size are more general.
Besides, the explicit limit bounds of the stochastic convergence
rates are provided,which clearly show the impacts of various kinds
of system parameters on the convergence rates, i.e. the number of
nodes, the variance of noises, the maximal weight, the eigenvalues
of the Laplacian matrix, etc. Also, sufficient conditions are given to
achieve fast convergence rate O(t−1). These will be all helpful for
developing efficient and practical distributed algorithms over large
scale sensor networks by designing the step sizes and network
parameters.

This paper is organized as follows. In Section 2, we formulate
the problem to be investigated. In Section 3, we investigate the
dynamic consensus error equation and give the mean square and

sample path convergence rates for the SA consensus algorithm.Nu-
merical simulations to corroborate our analytical findings are pre-
sented in Section 4, and concluding remarks are given in Section 5.
For the sake of conciseness, all the proofs are put in Appendix.

In this paper, we adopt the following notations. 1N×1 and
0N×1 denote N × 1 column vectors with all ones and all ze-
ros, respectively. For a given vector or matrix A, AT denotes its
transpose, and ∥A∥ denotes its 2-norm. For any given complex
number λ, Re(λ) denotes its real part and Im(λ) denotes its imag-
inary part. We denote f (t) = o(g(t)) if limt→∞ |f (t)/g(t)| = 0;
f (t) = O(g(t)) if lim supt→∞ |f (t)/g(t)| < ∞; f (t) = Ω(g(t))
if lim inft→∞ |f (t)/g(t)| > 0; and f (t) = Θ(g(t)) if both f (t) =

O(g(t)) and f (t) = Ω(g(t)). For a differentiable function f (t), f (k)(t)
denotes its kth derivative and f (0)(t) = f (t).

2. Problem formulation

For a weighted digraph G = {V, E,A}, V = {1, . . . ,N} denotes
the set ofN nodes, E denotes the set of edges, andA = [aij] ∈ RN×N

denotes the weighted adjacency matrix. The pair (j, i) ∈ E ⇔ node
j can send information to node i directly. Then j is called the parent
of i. Node i is called a source if it has no parent. The neighborhood
of the ith node is denoted by Ni = {j ∈ V|(j, i) ∈ E}. For any given
i, j ∈ V , aij ≥ 0, and aij > 0 if and only if j ∈ Ni. LG = D−A is called
the Laplacianmatrix of G, whereD = diag(

∑N
j=1a1j, . . . ,

∑N
j=1aNj).

The digraph G is balanced, if
∑N

j=1aji =
∑N

j=1aij for all i ∈ V . A
directed tree is a digraph, where every node except the root has
exactly one parent and the root is a source. A spanning tree of G is
a directed tree whose node set is V and whose edge set is a subset
of E . If the digraph G contains a spanning tree, then LG has a unique
zero eigenvalue and all other N − 1 eigenvalues have positive real
parts. We denote λ1 = 0 and all its distinct non-zero eigenvalues
by λ2, . . . , λl. We denote λ∗

2 = min{Re(λm), 2 ≤ m ≤ l}. It is
known that there exists a unique probability measure π T which
is the left eigenvector of LG associated with λ1, i.e., π T LG = 0N×1.
If the digraph G is balanced, then π T

= (1/N)1N×1.
Consider the discrete-time SA consensus algorithm for a N

nodes network

xi(t + 1) = xi(t) + a(t)
∑
j∈Ni

aij(yji(t) − xi(t)), t ≥ 0, i ∈ V, (1)

here the step size a(t) > 0; xi(t) ∈ R is the ith node’s state, and the
initial state xi(0) is deterministic; yji(t) is the received information
of the ith node from the jth node:

yji(t) = xj(t) + ωji(t), j ∈ Ni, (2)

where {ωji(t), t ≥ 0, i, j ∈ V} are the communication noises.
Denote X(t) = [x1(t), . . . , xN (t)]T . Eq. (1) can be rewritten as

follows:

X(t + 1) = (IN − a(t)LG)X(t) + a(t)ΣGW (t). (3)

Here, W (t) = [wT
1 (t), . . . , w

T
N (t)]

T , wi(t) = [ω1i(t), . . . , ωNi(t)]T

andΣG = diag(αT
1 , . . . , α

T
N ) is an N × N2 dimensional block diag-

onal matrix with αT
i being the ith row of the weighted adjacency

matrix A.
It was proved in [9] that if the digraph G contains a span-

ning tree and a(t) satisfies the standard conditions
∑

∞

t=0a(t) =

∞,
∑

∞

t=0a
2(t) < ∞, then the SA consensus algorithm (1)–(2)

can achieve both mean square and almost sure consensus, i.e.,
E|xi(t)|2 < ∞, and there exists a random variable x∗ such that
limt→∞E|xi(t) − x∗

|
2

= 0 and limt→∞xi(t) = x∗ a.s., for all i ∈ V .
Hereinafter, to measure the disagreement among the nodes, we
denote J = 1N×1π

T and the dynamic consensus error by δ(t) =

(IN − J)X(t).
In this paper, we will study the stochastic convergence rate of

δ(t) and our main goal includes two aspects:
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• To analyze the mean square and almost sure convergence
rates in relation to the step size a(t) and the network graph
parameters.

• To seek the optimal step size for achieving fast convergence.

3. Main results

Wemake the following assumptions.

1. Topology:

• (A1a) G contains a spanning tree.
• (A1b) G is balanced and strongly connected.1
• (A1c) G is undirected and connected.

2. Step size sequence:

• (A2) There exists γ ∈ (0.5, 1], 0 < α ≤ β < ∞ and
T0 > 0 such that

αt−γ ≤ a(t) ≤ βt−γ ,∀ t ≥ T0. (4)

3. Communication noises:

• (A3a) The noise sequence W (t) is a martingale differ-
ence sequence, and σ 2

W ≜ supt≥0E(∥W (t)∥2) < ∞.
• (A3b) The communication noises of different channels

are uncorrelated, i.e. E(W (t)W T (t)) = diag(E(ω2
11(t)),

. . . , E(ω2
N1(t)), . . . , E(ω

2
1N (t)), . . . , E(ω

2
NN (t))).

It is worth noting that Assumption (A2) describes a typical class
of step sizes a(t). There are two equivalence forms of (4): (i) a(t) =

Θ(t−γ ); (ii) 0 < lim inft→∞

(
a(t)tγ

)
≤ lim supt→∞

(
a(t)tγ

)
< ∞.

Especially, for any ε > 0, we may take α = lim inft→∞

(
a(t)tγ

)
− ε

and β = lim supt→∞

(
a(t)tγ

)
+ ε with suitable T0. Hereinafter, for

any given {a(t), t ≥ 0}, we will treat the parameters α, β, T0, γ as
fixed constants to offer more flexibility in theoretical analysis.

3.1. Mean square convergence

We first analyze the mean square convergence rate of the con-
sensus error. Then limit bounds are estimated for the case with
balanced digraphs. Finally, a sufficient condition will be given to
achieve the fast convergence rate O(t−1).

Theorem 3.1. Suppose that Assumptions (A1a), (A2) and (A3a) hold.
For the discrete-time SA consensus algorithm (1)–(2), (i) if γ ∈

(0.5, 1), then E(∥δ(t)∥2) = O(t−γ ); (ii) if γ = 1, then E(∥δ(t)∥2) =

O(t−1) when λ∗

2α > 1, and E(∥δ(t)∥2) = O(t−λα) when λ∗

2α ≤ 1.
Here, λ is any given positive real number less than λ∗

2.

Remark 3.1. For the SA consensus algorithms, it is known that
under Assumptions (A1a) and (A3a), for all γ ∈ (0.5, 1], the step
size a(t) = Θ(t−γ ) can guarantee consensus. Onewould intuitively
believe that γ = 1 might lead to faster convergence than the case
with γ ∈ (0.5, 1) [26,13]. However, Theorem 3.1 tells us that this is
not always true, especially, if λ∗

2α ≤ 1, then the convergence may
be slower thanΘ(t−1) even if γ = 1.

If the network graph is balanced, thenmore details can be given
for the relationship among the convergence rate, the step size a(t)
and the network parameters. We have the following theorem.

Theorem 3.2. Suppose that Assumptions (A1b), (A2), (A3a) and
(A3b) hold. For the discrete-time SA consensus algorithm (1)–(2), (i) if

1 A digraph G is strongly connected, if for any i, j ∈ V , there is a directed path
from i to j. For a balanced digraph, containing a spanning tree implies being strongly
connected.

γ ∈ (0.5, 1), then

lim sup
t→∞

tγ E(∥δ(t)∥2) ≤ C1β
2/(λ2 (̂LG)α); (5)

(ii) if γ = 1, then

lim sup
t→∞

tE(∥δ(t)∥2)

≤ C1β
2/(λ2 (̂LG)α − 1) when λ2 (̂LG)α > 1; (6)

lim sup
t→∞

t(ln t)−1E(∥δ(t)∥2) ≤ C1β
2 when λ2 (̂LG)α = 1; (7)

and

lim sup
t→∞

tλ2 (̂LG )αE(∥δ(t)∥2)

≤ C1β
2/(1 − λ2 (̂LG)α) when λ2 (̂LG)α < 1. (8)

Here, C1 = max1≤i,j≤Na2ijσ
2
W (N − 1)/N, and λ2 (̂LG) is the smallest

nonzero eigenvalue of the Laplacian matrix of the symmetrized graph
of G [15,8].

If the network is an undirected graph, then more precise es-
timates of the upper limit bound for the consensus error can be
given.

Theorem3.3. Suppose that Assumptions (A1c), (A2), (A3a) and (A3b)
hold. For the discrete-time SA consensus algorithm (1)–(2), (i) if γ ∈

(0.5, 1), then

lim sup
t→∞

tγ E(∥δ(t)∥2) ≤ C1β
2/(2λ2α); (9)

(ii) if γ = 1, then

lim sup
t→∞

tE(∥δ(t)∥2)

≤ C1β
2/(2λ2α − 1) when λ2α > 1/2; (10)

lim sup
t→∞

t(ln t)−1E(∥δ(t)∥2) ≤ C1β
2 when λ2α = 1/2; (11)

and
lim sup
t→∞

tλ2αE(∥δ(t)∥2)

≤ C1β
2/(1 − 2λ2α) when λ2α < 1/2. (12)

Here, C1 is given in Theorem 3.2.

Theorem3.4. Suppose that Assumptions (A1b), (A2), (A3a) and (A3b)
hold. For the discrete-time SA consensus algorithm (1)–(2), (i) if γ ∈

(0.5, 1), then

lim inf
t→∞

tγ E(∥δ(t)∥2) ≥ C̃1α
2/(2λN (̂LG)β); (13)

(ii) if γ = 1, then

lim inf
t→∞

tE(∥δ(t)∥2)

≥ C̃1α
2/(2λN (̂LG)β − 1) when λN (̂LG)β > 1/2; (14)

and
lim inf
t→∞

tE(∥δ(t)∥2) = ∞ when λN (̂LG)β ≤ 1/2. (15)

Here, C̃1 = inft≥0

{∑N
i,j=1a

2
ijE(ω

2
ji(t))

}
(N − 1)/N, and λN (̂LG) is

the largest eigenvalue of L̂G .

Remark 3.2. Theorems 3.2–3.4 jointly give the explicit conver-
gence rates of the consensus error under balanced digraphs or
undirected graphs. If γ ∈ (0.5, 1), then E(∥δ(t)∥2) = Θ(t−γ ); if
γ = 1, then E(∥δ(t)∥2) = Θ(t−1) provided λ2 (̂LG)α > 1, and
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limt→∞ tE(∥δ(t)∥2) = ∞ otherwise. Hence, the choice a(t) =

Θ(t−1) with λ2 (̂LG) lim inft→∞(ta(t)) > 1 suffices for achiev-
ing the fast convergence rate O(t−1). And for the case with
undirected graphs, the condition on a(t) can be relaxed to
λ2lim inft→∞(ta(t)) > 1/2 by Theorem 3.3. It is noted that the
eigenvalue λ2, called algebraic connectivity, characterizes the de-
gree of a graph’s connectivity. To achieve the fast convergence rate,
besides taking the step size a(t) = Θ(t−1), the connectivity degree
should be large enough such that λ2 > 1/(2 lim inft→∞(ta(t))).

3.2. Almost sure convergence

If the network is undirected, then the sample path convergence
rates of δ(t) can be characterized, which illustrate the properties of
the consensus algorithm with probability 1.

Theorem 3.5. Suppose that Assumptions (A1a), (A1c), (A2) and (A3a)
hold. For the discrete-time SA consensus algorithm (1)–(2), (i) if γ ∈

(0.5, 1), then

lim sup
t→∞

t
γ
2 (Υ log log(SλNt Υ ))−

1
2 ∥δ(t)∥

≤ β

√
|E|(N − 1)

∑
i,j a

2
ij

λ2α
a.s.; (16)

(ii) if γ = 1, then when λ2α > 1/2, we have

lim sup
t→∞

t
1
2 (Υ log log(SλNt Υ ))−

1
2 ∥δ(t)∥

≤ β

√
2|E|(N − 1)

∑
i,j a

2
ij

2λ2α − 1
a.s.; (17)

when λ2α = 1/2, we have

lim sup
t→∞

t
1
2 (ln t)−

1
2 (Υ log log(SλNt Υ ))−

1
2 ∥δ(t)∥

≤ β

√
2|E|(N − 1)

∑
i,j

a2ij a.s.; (18)

and when λ2α < 1/2, we have

lim sup
t→∞

tλ2α(Υ log log(SλNt Υ ))−
1
2 ∥δ(t)∥

≤ β

√
2|E|(N − 1)

∑
i,j a

2
ij

1 − 2λ2α
a.s. (19)

Here, Υ = supt≥0max1≤i,j≤NE(ω2
ji(t)), S

λN
t =

∑t
s=Ta

2(s)
∏s

r=T (1 −

λNa(r))−2, λ2 andλN are the smallest and largest nonzero eigenvalues
of the Laplacian matrix LG , T ≥ max{T1, T2, T5} with T1, T2 and T5
are given, respectively, in Lemma A.3, the proof of Theorem 3.1, and
Lemma A.6.

Remark 3.3. For any given ϵ > 0, we have (log log SλNt )1/2 = O(tϵ).
Thus if the communication noise is i.i.d. standardwhite noise, from
Theorem 3.5, we can conclude that ∥δ(t)∥ = O(t−

γ
2 +ϵ) almost

surely.

4. Numerical example

In this section, we present numerical examples to corrobo-
rate our analytical findings. In all the simulations presented, the
communication noises are Gaussianwhite noises with distribution
N(0, 1). To compute the mean square of the consensus error, we
simulate 1000 runs of the SA consensus algorithm from the initial
state. And the iteration time is 500.

Fig. 1. The curve of tE(∥δ(t)∥2) for the 4 nodes network with a1(t) = 0.2(t + 1)−1 .

Fig. 2. The curve of tE(∥δ(t)∥2) for the 4 nodes network with a2(t) = (t + 1)−1 .

4.1. The sufficient condition to achieve fast convergence rate

Example 4.1. Consider a sensor network of 4 nodes with the
network topology graph G = {V, E,A}, where V = {1, 2, 3, 4},
E = {(2, 1), (4, 2), (2, 3), (4, 3), (1, 4), (2, 4)} and A is the 0 − 1
weight adjacency matrix. The initial condition is given as X(0) =

[1, 6, 2, 3]T . We take the step size a1(t) = 0.2(t + 1)−1 and
a2(t) = (t + 1)−1, respectively, for the SA consensus algorithm (1).
Note that λ∗

2(LG) = 2, λ∗

2(LG) limt→∞ta1(t) = 0.4 < 1, and
λ∗

2(LG) limt→∞ta2(t) = 2 > 1.
In Figs. 1 and 2, we show the convergence rate of the SA con-

sensus algorithm by plotting tE(∥δ(t)∥2) versus different step sizes
a1(t) and a2(t), respectively. It can be seen that for the case with
a1(t), tE(∥δ(t)∥2) explodes, and for the case with a2(t), tE(∥δ(t)∥2)
decays fast initially and then reaches a steady state, which means
that the convergence rate of E(∥δ(t)∥2) is slower than Θ(t−1) for
the casewith a1(t), and E(∥δ(t)∥2) = Θ(t−1) for the casewith a2(t),
which are consistent with Theorem 3.1 and Remark 3.1.

Example 4.2. Consider a ring sensor network with 5 nodes where
each node has two neighbors. The ith node’s neighbor set Ni =

{i − 1, i + 1} for 2 ≤ i ≤ 4, N1 = {5, 2}, and N5 = {4, 1}.
Clearly it is a 2-regular undirected graph. The initial condition is
given as xi(0) = 2i − 1 for 1 ≤ i ≤ 5. We take the decreasing
step size a(t) = 0.3(t + 1)−1. Noting that λ2(LG) = 1.382,
we have λ2(LG) limt→∞ta(t) = 0.4146 < 0.5, which means
that the algebraic connectivity λ2(LG) of the network graph is not
sufficiently large to meet the sufficient condition illustrated in
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Fig. 3. The curve of tE(∥δ(t)∥2) for the 5 nodes ring network.

Fig. 4. The curve of tλ2(LG )αE(∥δ(t)∥2) for the 5 nodes ring network.

Remark 3.2. From Figs. 3 and 4, it can be seen that tE(∥δ(t)∥2)
explodes, while tλ2(LG )αE(∥δ(t)∥2) converges. The convergence rate
of E(∥δ(t)∥2) fails to attainΘ(t−1).

Now we increase the algebraic connectivity of the ring graph
by adding four edges (3, 1), (1, 3), (4, 2) and (2, 4). The new graph
is denoted by G̃ = {V, Ẽ, Ã}. Take the same step size a(t) =

0.3(t + 1)−1. Noting that λ2(LG̃) = 2, it can be verified that
λ2(LG̃) limt→∞ta(t) = 0.6 > 0.5, which meets the sufficient
condition to achieve the convergence rate Θ(t−1) illustrated in
Remark 3.2. From Fig. 5, it can be seen that tE(∥δ(t)∥2) converges,
which means that E(∥δ(t)∥2) = Θ(t−1).

4.2. Graph-related limit bounds

Example 4.3. Consider a ring sensor network with N nodes where
each node has two neighbors as in Example 4.2. The initial con-
dition is also given as xi(0) = 2i − 1 for 1 ≤ i ≤ N . We take
the decreasing step size a(t) = 2(t + 1)−0.98. The convergence
rate of the consensus error is shown when N = 4 and N = 7,
respectively, in Fig. 6, where the solid blue line denotes the curve
of t0.98E(∥δ(t)∥2) for N = 4, whereas the dashed red line denotes
the curve for N = 7. The two curves achieve steady values around
3 and 10, respectively.

The theoretical value of limt→∞t0.98E(∥δ(t)∥2) predicted by our
analysis is given by Theorems 3.3 and 3.4. When N = 4, it is easy
to check that C1 = C̃1 = 2(N − 1) = 6, λ2 = 2, λ4 = 4,

Fig. 5. The curve of tE(∥δ(t)∥2) for the 5 nodes ring network with 2 added edges.

Fig. 6. The curve of t0.98E(∥δ(t)∥2) for the ring graph network with a(t) = 2(t +

1)−0.98 .

and limt→∞t0.98E(∥δ(t)∥2) ∈ [1.5, 3]. When N = 7, it is easy
to check that C1 = C̃1 = 12, λ2 = 0.753, λ7 = 3.8019, and
limt→∞t0.98E(∥δ(t)∥2) ∈ [3.1563, 15.9385]. Here, we take α =

β = limt→∞(t0.98a(t)) = 2 for the simplicity of computation.
The numerical result demonstrated in Fig. 6 shows that the limit
bounds given by the theoretical results are quite reasonable.

5. Conclusions

In this paper, we have considered the stochastic convergence
rates for SA consensus algorithms with martingale difference se-
quence communication noises under directed topologies. By the
tools of stochastic analysis and algebraic graph theory, we have
quantified the relationship among the convergence rate, the step
size a(t), and the network topology.We found that if a(t) = Θ(t−γ )
with γ ∈ (0.5, 1], then for the case with general digraphs with
spanning trees, the mean square of the consensus error has a
convergence rate of O(t−γ ) if γ ∈ (0.5, 1) and O(t−1) if γ = 1
and λ∗

2α > 1. These results are further extended to the case
with balanced digraphs and undirected graphs,which indicates the
optimal choice of {a(t), t ≥ 0} to achieve fast convergence rate.
Furthermore, we give the calculationmethods for the limit bounds
of the convergence rate of the consensus error by the network
topology parameters, e.g., the number of nodes and edges. The
sample path convergence rate performances are also derived for
undirected graphs.
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There are many interesting topics deserving further investiga-
tion, such as to get the convergence time for any given accuracy and
extend our analysis to networks with nonlinear dynamics, random
link failures, time-varying topologies, and time delays.
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Appendix

Lemma A.1 ([9]). Suppose that Assumption (A1a) holds. Then for any
given matrix φN×(N−1) satisfying span{φN×(N−1)} = span{LG}, the
matrixΦ = (1N×1 φN×(N−1)) is nonsingular,Φ−1 has the representa-
tion Φ−1

=

(
πT

ψ(N−1)×N

)
and Φ−1LGΦ =

(
0 01×(N−1)

0(N−1)×1 L̃G

)
. Here,

all N −1 eigenvalues of L̃G , which are also nonzero eigenvalues of LG ,
have positive real parts.

Lemma A.2. Under Assumption (A2), for any given t > s > T0 and
λ > 0, if γ ∈ (0.5, 1), we have

e
λβ
1−γ s1−γ e−

λβ
1−γ t1−γ

≤ e−λ
∑t

r=s+1 a(r)
≤ e

λα
1−γ (s+1)1−γ e−

λα
1−γ (t+1)1−γ

, (A.1)

and if γ = 1, then

sλβ t−λβ ≤ e−λ
∑t

r=s+1 a(r)
≤ (s + 1)λα(t + 1)−λα. (A.2)

The proof is straightforward and is omitted here.

Lemma A.3. Under Assumption (A2), if γ ∈ (0.5, 1), for any given
real number λ > 0, there exists T1 > 1 such that for any given T ≥ T1,
we have

lim sup
t→∞

tγ
t∑

s=T

a2(s)e−λ
∑t

r=s+1 a(r)
≤ β2/(λα), (A.3)

and

lim inf
t→∞

tγ
t∑

s=T

a2(s)e−λ
∑t

r=s+1 a(r)
≥ α2/(λβ). (A.4)

Proof. By Assumption (A2) and Lemma A.2, for any given T ≥ T0,
we have

t∑
s=T

a2(s)e−λ
∑t

r=s+1 a(r)

≤ β2e−
λα
1−γ (t+1)1−γ

t∑
s=T

s−2γ e
λα
1−γ (s+1)1−γ

. (A.5)

Denote δ = λα/(1 − γ ). It is easy to check that there exists a
constant C > 0 such that for any given s > C , f (s) = s−2γ eσ (s+1)1−γ

is increasing. Therefore for all T > C , we have
t∑

s=T

s−2γ eδ(s+1)1−γ
≤

∫ t+1

T
s−2γ eδ(s+1)1−γ ds. (A.6)

By L’Hôpital’s rule, it follows that

lim
t→∞

∫ t+1
T s−2γ eδ(s+1)1−γ ds

(t + 1)−γ eδ(t+2)1−γ
=

1
λα
. (A.7)

Denote T1 = max{T0, C}. By Eqs. (A.5), (A.6) and (A.7), and noting
that limt→∞tγ e−δ(t+1)1−γ (t + 1)−γ eδ(t+2)1−γ

= 1, Eq. (A.3) follows.
(A.4) can be obtained similarly.

Lemma A.4. Under Assumption (A2), if γ = 1, when λα > 1, then
for any given T > T0, we have

lim sup
t→∞

t
t∑

s=T

a2(s)e−λ
∑t

r=s+1 a(r)
≤ β2/(λα − 1); (A.8)

when λα = 1, we have

lim sup
t→∞

t(ln t)−1
t∑

s=T

a2(s)e−λ
∑t

r=s+1 a(r)
≤ β2

; (A.9)

and when λα < 1, we have

lim sup
t→∞

tλα
t∑

s=T

a2(s)e−λ
∑t

r=s+1 a(r)
≤ β2/(1 − λα). (A.10)

Proof. By Assumption (A2) and Lemma A.2, we have
t∑

s=T

a2(s)e−λ
∑t

r=s+1 a(r)

≤ β2(t + 1)−λα
∫ t+1

T−1
(sλα−2

+ O(sλα−3))ds.

It is easy to check that∫ t+1

T−1
sλα−2ds

=

{
ln(t + 1) − ln(T − 1), if λα = 1;

1/(λα − 1)((t + 1)λα−1
− (T − 1)λα−1) if λα ̸= 1.

Note that (T−1)λα−1 < 1 if λα ≤ 1 and T > T0. And the conclusion
follows.

Lemma A.5. Under Assumption (A2), if γ = 1, then for any given
T > T0, when λβ > 1, we have

lim inf
t→∞

t
t∑

s=T

a2(s)e−λ
∑t

r=s+1 a(r)
≥ α2/(λβ − 1); (A.11)

and when λβ ≤ 1, we have

lim inf
t→∞

t
t∑

s=T

a2(s)e−λ
∑t

r=s+1 a(r)
= ∞. (A.12)

The proof is similar to Lemma A.4.

Lemma A.6. Under Assumption (A2), for any given positive real
number λ, there exists T5 > 0 such that

lim
t→∞

t∑
s=T

a2(s)
s∏

r=T

(1 − λa(r))−2
= ∞,∀T ≥ T5. (A.13)

Proof. For all T ≥ T0, with T0 given in Assumption (A2), we denote
Sλt =

∑t
s=Ta

2(s)
∏s

r=T (1 − λa(r))−2. In view of (1 − x)−1
≥ ex for

all 0 < x < 1, we have

Sλt ≥ α2
t∑

s=T

s−2γ e2λα
∑s

r=T rγ
≥ α2e−

2λα
1+γ T1+γ

t∑
s=T

s−2γ e
2λα
1+γ s1+γ

.

It is easy to check that f (s) = s−2γ e
2λα
1+γ s1+γ is increasing when

s > γ/(λα). Hence, for all T > γ/(λα), we have Sλt ≥ α2

e−
2λα
1+γ T1+γ∫ t

T s−2γ e
2λiα
1+γ s1+γ ds.Note that limt→∞s1−2γ e

2λα
1+γ s1+γ

= ∞.
By Cauchy criteria of improper integral, we have limt→∞

∫ t
T s

−2γ
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e
2λα
1+γ s1+γ ds = ∞. Denote T5 = max{T0, γ /(λα)}. And (A.13)

follows.

Proof of Theorem 3.1. (i) By (3) and the equation (IN − J)(IN −

a(t)LG) = (IN − a(t)LG)(IN − J), it is easy to check that δ(t + 1) =

(IN − a(t)LG)δ(t) + a(t)(IN − J)ΣGW (t). Define δ̃(t) = Φ−1δ(t),
with Φ−1 given in Lemma A.1. Denote η(t) = (δ̃2(t), . . . , δ̃N (t))

T
.

In view of that π T (IN − J) = π T
(
IN − 1N×1π

T
)

= 01×N , it follows
that for any given T ≥ T0 with T0 is given in Assumption (A2), the
closed-form solution can be written as

δ̃1(t + 1) = δ̃1(0) = π T δ(0) = π T (IN − J)X(0) = 0, (A.14)

η(t + 1) =

t∏
s=T

(IN−1 − a(s)L̃G)η(T )

+

t∑
s=T

( t∏
r=s+1

(IN−1 − a(r)L̃G)
)

× a(s)ψ(N−1)×N (IN − J)ΣGW (s). (A.15)

Here, L̃G is given in Lemma A.1. Define f (T , t, L̃G) =
∏t

s=T (IN−1 −

a(s)L̃G), and g(s, t, L̃G) =
∏t

r=s+1(IN−1 − a(r)L̃G). By properties of
the 2-norm, we have

E(∥η(t + 1)∥2) ≤ ∥f (T , t, L̃G)∥2E(∥η(T )2∥)

+ C0∥

t∑
s=T

a(s)g(s, t, L̃G)∥2, (A.16)

where C0 = ∥ψ(N−1)×N (IN − J)ΣG∥
2σ 2

W . Then it will be suf-
ficient to analyze the convergence rate of ∥f (T , t, L̃G)∥2 and
∥
∑t

s=Ta(s)g(s, t, L̃G)∥
2, respectively.

Assume the Jordan normal form of L̃G is diag(Jλ1,n1 , . . . , Jλq,nq ),
where Jλi,ni is an ni × ni Jordan block with the diagonal filled
with λi and the superdiagonal composed by ones. Then we can
assert that each element of the matrix function f (T , t, L̃G) and∑t

s=Ta(s)g(s, t, L̃G) are finite linear combinations of f (k)λm
(T , t, λm),

and
∑t

s=Ta(s)g
(k)
λm

(s, t, λm), respectively, m = 2, . . . , q, k =

0, 1, . . . , nm − 1, i, j ∈ V . Here, f (T , t, λ) =
∏t

s=T (1 − a(s)λ), and
g(s, t, λ) =

∏t
r=s+1(1−a(r)λ). It will be sufficient to analyze these

items separately.
For any given λm, m = 2, . . . , q, we have ∥1 − a(s)λm∥ =(

1+a2(s)|λm|
2
−2a(s)Re(λm)

)1/2
. By Assumption (A2), there exists

T2 > 0 such that for any given T ≥ T2, we have a(t) ≤ min{Re(λm)/
|λm|

2, 3/(8Re(λm))}. Then we can conclude that

∥1 − a(s)λm∥ ≤
(
1 − a(s)Re(λm)

)1/2
, (A.17)

and

∥1 − a(s)λm∥ ≥
(
1 − 2a(s)Re(λm)

)1/2
≥ 1/2. (A.18)

By (A.17) and the fact that 1− x ≤ e−x for x ≥ 0, it follows that for
any given T ≥ max{T0, T2},

∥f (T , t, λm)∥ ≤

t∏
s=T

(
1 − a(s)Re(λm)

)1/2
≤ e−(Re(λm)/2)

∑t
s=T a(s). (A.19)

For f (1)λm
(T , t, λm), by (A.18), we have

∥f (1)λm
(T , t, λm)∥ ≤ ∥f (T , t, λm)∥

t∑
s1=T

a(s1)
∥1 − a(s1)λm∥

≤ 2∥f (T , t, λm)∥
t∑

s1=T

a(s1),

∥f (2)λm
(T , t, λm)∥

=

 t∑
s1=T

(
a(s1)

t∑
s2=T ,s2 ̸=s1

(
a(s2)

t∏
s=T ,s̸=s1,s2

(1 − a(s)λm)
))

≤ ∥f (T , t, λm)∥
t∑

s1=T

( a(s1)
∥1 − a(s1)λm∥

t∑
s2=T ,s2 ̸=s1

a(s2)
∥1 − a(s2)λm∥

)

≤ 22
∥f (T , t, λm)∥(

t∑
s1=T

a(s1))2.

Similarly, for k = 3, . . . , nm − 1, we have

∥f (k)λm
(T , t, λm)∥ ≤ 2k

∥f (T , t, λm)∥
( t∑
s1=T

a(s1)
)k
. (A.20)

Noting that for any given ϵ > 0 and k = 0, 1, . . . , nm − 1, there
exists a constant C(k, ϵ) > 0 such that( t∑
s1=T

a(s1)
)k

≤ C(k, ϵ)eϵ
∑t

s1=T a(s1). (A.21)

By Eqs. (A.19), (A.20) and (A.21), it follows that for any given λ ∈

(0, λ∗

2), andm = 2, . . . , q, k = 0, 1, . . . , nm − 1, we have

∥f (k)λm
(T , t, λm)∥ = O(e−(λ/2)

∑t
s=T a(s)). (A.22)

Similarly, we have

∥g (k)
λm

(s, t, λm)∥ = O(e−(λ/2)
∑t

r=s+1 a(r)). (A.23)

In the remainder of this proof, without loss of generality, we
assume that T ≥ max{T1, T2}, with T1 is given in Lemma A.3.

If γ ∈ (0.5, 1), by Lemma A.2, it follows that e−(λ/2)
∑t

s=T a(s) =

o(t−1). Then by Eqs. (A.22)–(A.23) and Lemma A.3, we have
E(∥δ(t)∥2) = O(t−γ ).

(ii) If γ = 1, when λ∗

2α > 1, we can always take ϵ and λ =

λ∗

2 − ϵ satisfying that λβ > λα > 1. By Lemma A.2, we have
e−λ

∑t
s=T a(s) = O(t−1/2). Combining Lemma A.4 and Eqs. (A.22)–

(A.23), we can conclude that E(∥δ(t)∥2) = O(t−1). If λ∗

2α ≤ 1, then
for any given λ less than λ∗

2, the conclusion E(∥δ(t)∥2) = O(t−λα)
follows by Lemmas A.2 and A.4.

Proof of Theorem 3.2. By Assumption (A1b), we know that L̂G
can be diagonalize [15] and has N real eigenvalues 0 = λ1 (̂LG) ≤

λ2 (̂LG) ≤ · · · ≤ λN (̂LG). Denote Ξ = [ξ1, ξ2, . . . , ξN ], where
ξi is the unit eigenvector of L̂G associated with λi (̂LG). Note that
π T

= (1/N)11×N , hence ξ1 = 1/(
√
N)1N×1, and Ξ T L̂GΞ =

Λ̂LG = diag(0, λ2 (̂LG), . . . , λN (̂LG)). Define δ̃(t) = Ξ T δ(t). Denote

Ξ T LGΞ =

(
0 01×(N−1)

0(N−1)×1 L̃G

)
, η(t) = (δ̃2(t), . . . , δ̃N (t))T , and

ΞN×(N−1) = [ξ2, . . . , ξN ]. Thus, we have

E(∥δ(t + 1)∥2) = E(ηT (t)(IN−1 − 2a(t)Λ̂LG + a2(t)L̃TG L̃G)η(t))

+ E(∥Ξ T
N×(N−1)(IN − J)ΣGW (t)∥2)a2(t). (A.24)

Note that ΣGW (t) = (
∑N

i=1a1iωi1, . . . ,
∑N

i=1aNiωiN ), Ξ T
N×(N−1)

ΞN×(N−1) = IN−1, and ΞN×(N−1)Ξ
T
N×(N−1) = IN − JN . By Assump-

tion (A3b), we have

E(∥Ξ T
N×(N−1)(IN − J)ΣGW (t)∥2)

=

N∑
i,j=1

a2ijE(ω
2
ji(t))(N − 1)/N. (A.25)
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By Assumption (A2), there exists T3 > 0 such that a(t)λ2 (̂LG) −

a2(t)∥L̃G∥
2 > 0,∀t ≥ T3. In the remainder of this proof, without

loss of generality, we assume that T ≥ max{T1, T2, T3}, with T1
and T2 are given, respectively, in Lemma A.3 and the proof of
Theorem 3.1.

Thus

E(∥δ(t + 1)∥2) ≤ (1 − λ2 (̂LG)a(t))E∥δ(t)∥2
+ C1a2(t).

≤ e−λ2 (̂LG )
∑t

s=T a(s)E(∥δ(T )∥2)

+ C1

t∑
s=T

a2(s)e−λ2 (̂LG )
∑t

r=s+1 a(r).

If γ ∈ (0.5, 1), then (5) follows from Lemmas A.2 and A.3. If γ = 1,
the result follows by Lemmas A.2 and A.4.

Proof of Theorem 3.3. Note that for the undirected graph, its
Laplacian matrix LG is diagonalizable. We denote its N real eigen-
values by 0 = λ1 ≤ λ2 ≤ · · · ≤ λN . Denote Γ = [γ1, γ2, . . . , γN ],
where γi is the unit eigenvector of LG associated with λi. Clearly,
we have γ1 = (1/

√
N)1N×1. Denote δ̃(t) = Γ −1δ(t) and η(t) =

(δ̃2(t), . . . , δ̃N (t))T . It is easy to check that E(∥δ(t + 1)∥2) ≤ (1 −

λ2a(t))2E(∥δ(t)∥2)+ C1a2(t).With the similar analysis in the proof
of Theorem 3.2, the results in Theorem 3.3 can be obtained.

Proof of Theorem 3.4. For any given T > 0, by Eqs. (A.24) and
(A.25), we have

E(∥δ(t + 1)∥2)

≥

t∏
s=T

(1 − 2λN (̂LG)a(s))E(∥δ(T )∥2)

+ C̃1

t∑
s=T

( t∏
r=s+1

(1 − 2λN (̂LG)a(r))
)
a2(s).

For any given ϵ > 0, by Assumption (A2), we can conclude that
there exists T4 > 0 such that a(t)λN (̂LG) ≤ (ln(1+ϵ))/(1+ϵ),∀t ≥

T4. In the remainder of this proof, without loss of generality, we
assume that T ≥ max{T1, T2, T4}, with T1 and T2 are given, re-
spectively, in Lemma A.3 and the proof of Theorem 3.1. In view of
1−x ≥ e−(1+ϵ)x for all x ∈ (0, (ln(1+ϵ))/(1+ϵ)), we have E(∥δ(t+
1)∥2) ≥ C̃1

∑t
s=Ta

2(s)e−2(1+ϵ)λN (̂LG )
∑t

r=s+1a(r). By Lemma A.3, we
have lim inft→∞ tγ E(∥δ(t)∥2) ≥ C̃1α

2/(2(1 + ϵ)λN (̂LG)β). And the
result in Eq. (13) follows by letting ϵ → 0. Eq. (14) can be obtained
similarly by Lemma A.5.

Proof of Theorem 3.5. Wewill continue to adopt the notations in
the proof of Theorem 3.3. By the properties of 2-norm, we have

∥δ(t + 1)∥ ≤ ∥Γ ∥∥δ̃(t + 1)∥ ≤
√
N max

1≤i≤N
∥δ̃i(t + 1)∥. (A.26)

It is easy to check that for any given T > 0, the closed-form of the
solution is

δ̃1(t + 1) =δ̃1(0) =
1

√
N
11×N (IN − J)X(0) = 0,

δ̃i(t + 1) =

t∏
s=T

(1 − λia(s))δ̃i(T )

+ γ T
i (IN − J)ΣG

t∑
s=T

( t∏
r=s+1

(1 − λia(r))
)
a(s)W (s).

(A.27)

In the remainder of this proof, we assume T ≥ max{T1, T2, T5}with
T1, T2 and T5 are given, respectively, in Lemma A.3, the proof of
Theorem 3.1, and Lemma A.6.

For the first item on the right hand side of (A.27), in view of
LemmaA.2 and1−x ≤ e−x when x > 0,wehave

∏t
s=T (1−λia(s)) ≤

e−λi
∑t

s=T a(s) = o(t−1/2).
For the second item, noting that γi is orthogonal, it follows that

∥γ T
i (IN − J)ΣG∥ ≤ (tr(ΣT

G(IN − J)ΣG))1/2

=
(N − 1

N

∑
i,j

a2ij
)1/2

. (A.28)

By the properties of 2-norm, we have

∥

t∑
s=T

( t∏
r=s+1

(1 − λia(r))
)
a(s)W (s)∥

≤

√
|E| max

(j,i)∈E
∥

t∑
s=T

( t∏
r=s+1

(1 − λia(r))
)
a(s)ωji(s)∥. (A.29)

Hereinafter, we will mainly focus on the estimation of the con-
vergence rate for the stochastic part

∑t
s=T

(∏t
r=s+1(1 − λia(r))

)
a(s)ωji(s). By Lemma A.6 and the law of iterated logarithm of the
martingale difference sequence [27], we have

lim sup
t→∞

|
∑t

s=T

(∏s
r=T (1 − λia(r))−1

)
a(s)ωji(s)|

(2Sλit E(ω2
ji(t)) log log(S

λi
t E(ω2

ji(t))))
1
2

= 1 a.s. (A.30)

Here, Sλit =
∑t

s=Ta
2(s)

∏s
r=T (1 − λia(r))−2. In view of 1 − x ≤ e−x

when x > 0, we have
t∏

r=T

(1 − λia(r))2S
λi
t ≤

t∑
s=T

a2(s)e−2λi
∑t

r=s+1 a(r). (A.31)

By (A.30)–(A.31) and Lemma A.3, we have

lim sup
t→∞

t
γ
2 (E(ω2

ji(t)) log log(S
λi
t E(ω2

ji(t))))
−

1
2

× ∥

t∑
s=T

( t∏
r=s+1

(1 − λia(r))
)
a(s)ωji(s)∥

≤ lim sup
t→∞

(
tγ

t∏
r=T

(1 − λia(r))2S
λi
t

) 1
2

×

|
∑t

s=T

(∏s
r=T (1 − λia(r))−1

)
a(s)ωji(s)|

(Sλit E(ω2
ji(t)) log log(S

λi
t E(ω2

ji(t))))
1
2

≤ β/
√
λiα a.s. (A.32)

Combining (A.28), (A.29), and (A.32), we have

lim sup
t→∞

t
γ
2 (E(ω2

ji(t)) log log(S
λi
t E(ω2

ji(t))))
−

1
2 ∥δ̃i(t + 1)∥

≤ β

√
|E|(N − 1)

∑
i,j a

2
ij

λiαN
a.s. (A.33)

Note that Sλ2t ≤ Sλit ≤ SλNt for λ2 ≤ λi ≤ λN . Thus we have

lim sup
t→∞

t
γ
2 (Υ log log(SλNt Υ ))−

1
2 ∥δ̃i(t + 1)∥

≤ β

√
|E|(N − 1)

∑
i,j a

2
ij

λ2αN
a.s. (A.34)

And the conclusion in (i) follows by (A.26) and (A.34).
If γ = 1, by following the same step of the case γ ∈ (0.5, 1),

the conclusion in (ii) can be obtained similarly by Lemmas A.2, A.4
and A.6.
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